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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR 4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 1k

1541-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of ILinear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Fhase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a ILinear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation aqd Interpretation of the Drift-Minimum
Principle -

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts
and objectively discusses the significance of the results obtained. The
results of inconclusive and/or.unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it is shown that the problem of controlling m components
(1 <m < n), of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformulated as a problem of controlling
a single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section 7.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 1ll.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

~ In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a ‘certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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AN APPLICATION OF THE QUADRATIC PENALTY FUNCTION
CRITERION TO THE DETERMINATION OF A
LINEAR CONTROL FOR A FLEXIBLE VEHICLEf

¥

By E. E. Fisher

167 57 ABSTRACT

A linear controller 1s designed for a typical five-engine
flexible rocket booster by use of the quadratic penalty function
criterion. Consideration is given to the sensor requirement for
controller implementation. It is shown that the optimal

controller can be approximated using less sensors than the plant
order. A drion

INTRODUCTION

A difficult problem in the application of state vector control
theory to the flexible vehicle is that of determining a method
of control feedback. Control laws are determined in terms of the
components of the state vector. Sensors, however, measure a
blend of state vector components. Superficial considerations
indicate that a large number of sensors is required in order that
all of the "dominant" state vector components can be determined.
From these components the feedback is then usually established.
This paper will investigate the possibility of implementing a
quadratic criterion controller using some minimal number of sensors,

that is, using less than the above mentioned large number of sensors.

* Prepared under contract NASw-563 for the NASA.

i Research Scientist, Minneapolis-Honeywell Regulator Company,
Minneapolis, Minnesota.




Specifically, 1t 1s assumed a finite flexure mode model
of the flexible vehicle is given. Such a model is to include all
flexure modes which will be of importance for the type of
controllers and wind disturbances under consideration. ILet n
be the order of this model. A lineaf control law will be
determined by use of the quadratic criterion. Methods will be
investigated by which the derived controller can be implemented
using less than n sensors.

The dynamics of the assumed vehicle zre presented first.

VEHICLE DYNAMICS

The dynamical equations of a typical five-engine flexible
rocket booster are presented. Consideration is given to rigid
body and three flexure degrees of freedom. Fuel sloshing and
engine dynamics are not considered. Linear equations with
constant coefficients are assumed. The motion considered is in
the pitech plane. With recourse to the definitions in Table 1

the equations of motion are equations 1 through 4.

.  P-X N’ R’ 3 4 Lateral Path
= e + — —_— + 2
zZ —= 9 —a+ =8 & 3Ny Motion (1)
3 : ‘
P+ cqa + c B+ Jil eyny = 0] Angular Motion (2)
a =9 - %— Angular Relationship (3)
o .
no+ or 4 aBn. = T { = 1.2 Flexure 4
N 1040y + @iy = 4,6 + 223 Motion (4)

Here - represents differentation with respect to time. New
variables are defined so that the equations can be rewritten in

the standard state vector form. The change of variables



is defined by equation 5.
xl = @ x2 =9 x3 =Q X) = “1 x5 = “1
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On this transformation the equations of motion become those
given by equation 6.
X = Ax + bu (6)

Here x is a column vector with components Xq3Xps 000X and A

9
and b are matrices as listed below with aiJ and b1 appropriate

constants

o a5 0 0 0 0] 0 0 0 0

0O O ay3 89y 0 8op 0 ang 0o b2
a3y a32 a33 asy 0 a3 0 asg o b3

0 0 o 0 a45 0 0 0 0 0

A=l0 0 0 agag O 0 0 O b=}bg (7)

0 0 0 0 0 0 a67 0 0 0

0 0 o) 0 0 a6 a77 0 0 b7

0O 0 0O o O o0 o0 o agg 0

o o0 o o o o o a98 a99 b9

Of prime concern 1s the information available from sensors
for feedback purposes. If sa(y) is the output of an accelerometer
located at a statlion y meters from the rocket'!s booster's tail,
it can be shown that sa(y) will be given by equation 8. (Again

the definitions in Table 1 are used).
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Ir e and"t')1 are replaced in equation (8) by their values

as glven by equations 2 and 4 there results
9
s, (v) = 323 203 (V)% + 2550 (9)

Here the coefficients zaJ(y) are functions which depend on y
elther linearly or through the mode slope functions Yi(y). It
is noticed that for a given fixed sensor location y the output
of an accelerometer is a l;near non-homogeneous function of the
state variables xl,xa,...xg. Since the non-homogeneous term
Zao4 can in principle be subtracted from the sensor output,
sa(y) will henceforth be considered given by equation (9) with
Z,0 set equal to zero.

If sr(y) is the output of a rate gyro located y meters from
the rocket booster’s tall, it can be shown that sr(Y) is as given

by equation (10).
.3
sp(y) =9 2 Y, (y)ny (10)

Finally if sp(y) is the output of a position gyro (angular
position) located y meters from the rocket booster’s tail, it

can be shown that Sp(y) is as given by equation (11).
3
8,(v) =0 + Z, Yalving (11)

The important thing to be noticed is that both rate and position
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gyros measure linear comblnations of the state variables
xl,xg’...xg. To form a correspondence between the outputs
sr(y), sp(y), and sa(y) equation (10) and (11) will be rewritten
as given by equation (12).

s,(y) = = 2y (¥)x4

J=2,5,T7,9
(12)

sp(y) z J(y)xJ

2z
J=l,4,6,8 p

Here the coefficients er(y) and sz(y) are the appropriate
functions of y. 1In what follows any sensor whose output is a
linear homogeneous function of the state variables (as the above
are) will be called a linear sensor.

If the output of nine linear sensors 1s given, and if the
associated matrix (which depends on the locations of the nine
sensors, as well as their type) i1s non-singular, then the nine
time functions xl,xz,...x9 can be expressed as a linear combilnation
of the nine sensor outputs. Thus any control law (a rule which
determines u as a function of xl,...x9 is called a control law)
can, in this case, in principle, be constructed. Later, consideration
is given to the problem of implementing a given linear control
law using less than nine sensors.

This suffices to introduce plant and sensor dynamics; thus

attention is turned to controller design.

DESIGN OF VEHICLE CONTROLLER
BY THE QUADRATIC CRITERION
The quadratic criterion is discussed with comments about

its applicability to the flexible vehicle problem. The design of
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a controller for the given vehicle is then presented.
THE QUADRATIC PENALTY FUNCTION CRITERION
Iet a system be governed by the state equétion
X = AX + bu A ' (13)
where x is an n-vector which represents the state of the system,
A 1s a constant n by n matfix, b 1s a constant n vector,’and
u is a scalar. Consider the problem of determining a control law
u = k’x (14)
Where k is an n dimensional constant vector and / indicates
transpose. For a given positive definite symmetric matrix
Q a control law u = k’x is desired which minimizes V(t) given

by equation (15).
T
2v(t) = 1im [ (x’Qx + u®)drt (15)
t

Here t is the presentT;ng. Kalman (reference 3) has shown
that ﬁnder'appropriate conditions of contfollability there
exists a unique positive definite matrix P which satisfies the
matrix equation

A’P + PA - Pbb’P + Q=0 (16)
such that the control u = k/x with k given by

k = - Pb | (17)
is the unique optimum control.

Designing via the quadratic penalty criterion is an

iteratlive process which starts with estimating the weighting
matrix Q on the basis of physical considerations. Equation (16)

1s then solved for the assoclated P matrix. The gain vector k
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is established by equation (17) and the closed loop system is
examined for physical characteristics. This leads to the need
for a re-adjustment of the weighting matrix Q and the process 1is
thus 1terated.

The exact physical characteristics requifgd are stabilizatlion
of the unstable air-frame, small deviation froh the desired attitude,
small angle of attack to reduce bending loads, bounded engilne
deflection and rates, etc. With the exception of stability, none
of these things result automatically from the quadratic criterion.
The quadratic criterion does, however, offer an orderly iterative
process by which an acceptable controller can be constructed. This
is an advantage over some conventional methods.

DESIGN OF A CONTROLLER FOR THE GIVEN VEHICLE

Numerical values for the matrices A and b are given in Table 2.
The units used are meters, radians, and seconds. For purposes of
comparison the characteristic roots xl,xg,...xg of the matrix A
are presented in Table 3.

High order in the differential equations of the plant as
well as a natural interest in rigid body motion motivated a study'
of a fictitious rigid body governed by equations'(18). A
controller was designed for this rigid body by a series of

adjustments, and re-adjustment of the matrix Q(l).
£(1) _ p(1),(1) , p(2),(2)

(1)
Xy 11 212 43 0 Ky )
(1)

3 831 33 933 b3 k3

{

and u(l) = k(l)x(l)
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After several iterations a suitable weighting matrix Q(l) with

corresponding matrix P(l) were arrived at. The resulting closed

loop characteristic roots were used as a criterion for the final

gselection of Q(l).

That is, the desired weighting matrix Q

(2

)

was chosen on the basis of the characteristic roots of the matrix

A(l) + b(l)k(l) which resulted from Q(l). Characteristic roots

and associated gains are presented in Table L,

matrices used were dilagonal and of the form Q(l) = [515 q(l)

(

Welghting

;77

= [qg l)], q(l) > 0. The controller listed as case 4 was con-
13 i

sidered the desired rigid body controller.

A fifth order system consisting of a fictitious rigid body

with one flexure mode was considered next.

governed by equations (19). )
$(2) _ 4(2),(2) | (2),(2)

*1 411
%2 421
<(2) _ xg) al2) _ 2z
Xy a1
5 51
and u

212

a52

(2) _ (2) (2)

815 25

=]
8.3)4
Quy
ag),

Its dynamics 1s

5(2) _

(2

2

()]
4@
(2)
)
(2)

D]

Here the weighting matrix Q(a) = [513q§2)] was used, where the

elements qgg)qée) and qu) vhere equal respectively to qgl),qél),and

(19)

qgl); and qﬁz) and qée) were chosen quite small, This building process

was motivated by difficulties in solving equation (16) for high

order systems. Although various procedures were tried in its

solution, integration of the Riccati matrix differential equation
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(given by equation (20)) to a steady state was finally adopted

*
as a method of solution

-GP _ )
SF=AP+ AP -PODP+Q (20)

An initial estimate of P(z) (the solution of equation (16)
for A(a),B(z) and Q(e)) was a matrix with its fourth and fifth
rows and columns set equal to zero and its remaining nine elements
set equal to the corresponding ones in P(l)(the solution of
equation (16) for A(l),B(l), and Q(l)). This was used as an initial
condition for the Riccatl equation which converged from there
quite rapidly. The process was extended to seventh and finally
ninth order systems for a variety of cases. Some of the results
for ninth order systems are presented in Table 5., 1In each case
it was found that the characteristic roots and assoclated gains
changed very little as the system was built up from the rigid
body problem. Table 6 indicates the progress of such a process
for the characteristic roots and associated gains, Table 7
indicates the progress for the P matrices, Case 1 corresponds
to a rigid body problem with weighting q = A, 9 = .05, and
a3 = .5. Each sucesslve case had two more variables added
(1.e., one more flexure mode) with additional weighting equal to
.0001,

It is noted that the weighting factor w defined in Table 5

- e O D e Gn 0 GO O D G v wn -

*# It is easily seen that if P(t) is a matrix which satisfies
equation (20) and if p(t) has reached a steady state equal to P,

a constant, then P satisfies equation (16). Kalman (reference 3)
shows that such a steady state is indeed a unique positive definite
solution of equation (16).
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has little effect on the closed loop flexure frequencles and
that its effect on closed loop damping goes as the square root
of w. Another trend as pointed out by Reynolds and Rynaski
(reference 1) is that the coefficients of the characteristic
equation increase in magnitude with an increase in the norm of
the matrix Q.

Previous experience with the flexible vehicle problem
indicates the controller listed as case 4 in Tables 6 and 7 as
a reasonable controller. Consideration will be given next to

its implementation.

CONSTRUCTION OF THE LINEAR
CONTROL LAW GIVEN BY THE
QUADRATIC CRITERION
A general linear sensor with location Y5 is defined to such

that its output s,(y,) 1s given by equation (21).
1\ |
9
si(yi) = Jil ZiJ(yi)xJ (21)

Here the coefficients ziJ depend in some fashion on vy as
indicated. It is noted that 8y and X, are time functions al-
though this dependence is not indicated. Let m sensors of the
above nature be stationed at locations Vys¥os«ees¥p where

m £ 9. Let the output of each sensor be multiplied by an as yet
undetermined sensor gain Yy and summed to form é feedback
quantity ¥ given by equation (22)

m 9
V48 = 2 yi( b zinJ) (22)

m
U= 2
= 1=1 * j=1

i=1

W
> -
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If kl,kz,...,k9 are the feedback gains given by the quadratic
criterion (kl,kz,...,kO are the components of the vector k as
-

previously defined) the desired feedback u is given by equation (23).

u = ng kaJ (23)
The quantity U will be equal to u if equation (24) is satisfied.
m
151 ViZiJ = kJ J=1,2,...,9 (24)

Thlis equation can be interpreted as a vector equation in the
vectors z, and k given by equation (25).
_ /
Zi - (211,212, L) -,219)

(25)
/
K = (kl,lcg,_...,kg) .
The vector equation is then that given by equation (26).
z (26)
2 v.2, = k. 2
1=1 i"1

In the event that m is 9 and the vectors z, are linearly
independent (i.e., they span the nine dimensional space) there

exist constants 7; such that equation (26) 1is true for any

given vector k. This 1is a statement of the fact that nine
independent* sensors serve to determine the nine components of

the state vector. (This result was shown by Harvey in reference 2).
If m is less than nine equation (26) will not be satisfied for

arbltrary k, but only those k which lie in the space spanned by

¥For linear sensors a set of sensors will be said to be independent
if the assoclated vectors zj are linearly independent. It is
tacitly assumed that this can be achieved by the correct variety
of sensors at the correct sensor locations.
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21525500052, Since k 1s given by the quadratic criﬁ;rion and
thus fixed, solution of equation (26) with m less than nine
involves selecting the zy in such a way that they span a space
which includes the vector k. Because the vectors 2y each depend

on the position of the ith

sensor y, there 1s some hope that,
with proper sensor positioning, equation (26) can be solved for
m less than nine. Because of the physical nature of the problem,
exact solutions are not necessary. For instance, the vector
iglvizi can be considered close tc k if the magnitude of theilr
difference vector or its square is small. Its square 1is there-
fore introduced as an error quantity E given by equation (27).
m
E= (2 vz - k)3 (27)
1=1

Consideration of the actual problem at hand dlctates hcw
the error function E 1is to be used. It is noted that the vectors
zi(yi) originate from accelerometers, rate gyros, or position
gyrcs,. That 1s, the m sensors indicated in equation (27) are
as yet not determined combination of accelerometers, rate gyros,
and position gyros. There are located at certain specific,
though as yet undetermined, locatilons Y1sYoseeesVpye As is
usually the case, the error functlion E should be minimized with
respect to its parameters to yleld the best set of parameters.
These parameters include the m sensor galns Y4 and the m sensor
positions Iy If E is minimized with respect to the sensor
positions Vi the mathematical minimum may result in certain of

the yils being at the ends of the booster. This could happen

because the variables y, are defined only for O < ¥y < ./ where
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Zis tre booster length. Also minimizatlon with respect to the
yi’s is not a linear problem since the yi’s enter the problem
non-linearly through the mode slope functions. For these reasons
the error function E will not be minimized with respect to the
yi’s. Instead the positions ¥y will be assumed given and the
error function E will be minimized (for the given Yy s8) in terms
of the vi’s. The yi/s which minimize E for given fixed y,’s

are given by the famlliar linear least squares normal equations,
equations(28).

m
Zovlagg) =k 1=12,00m (28)

(Here « indicates the vector dot product)

It is noted that for many rocket booster problems it may be
advantageous to minimize E with respect to both the yi’s and
yi’s. This is not done here.

Attention 1s now turned to the calculation at hand, the
approximation of the feedback derived. (This is displayed in
Tables 6 and 7 as case 4.) |

Three basic types of sensors (accelerometers, rate gyros,
and position gyros) are assumed. These will have sensor gain

vectors given by equation (29). The mode shape

Zgs Zps Zp
functions Yl(y), Y2(y), and Y3(y) whose derivatives appear in
equation (29) are given by the polynomials in equation (30).

The location variable y is assumed to be in the interval (0,100),
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zg1(y) =0 z(y) =0 z,(y) =1
zoo(¥) = 0 z(¥) =1 z,o(y) =0
2g3(y) = 39.28 - 1.138y =z o(y) =0 z2,3(y) =0
z,,(y) = -20.89 ¥ (y) z(y) =0 2oy (y) = ¥, (v)
-.036y - .29,02
Z,5(y) = -.055 25(¥) = ¥ (y)  z5(y) =0 (29)
z,6(y) = -20.89 Y, (y) zg(y) = 0 z,6(¥) = Y,(y)
-.030y - 1685 |
2g7(y) = -.130 2 (y) = ¥5(y) z7(y) =0
2,8 = -20.89 ¥5(y) zg(y) =0 z,8(¥y) = ¥5(y)
-.027y =-333.9
Za9 = - .183 ZPQ(y) = Y3(y) ng(y) =0
Y, (y) = .1045 x 10 - .6319 x 1071y + .5017 x 1073y + .3273 x 10793
-.2829 x 10707% + 4599 x 1078y - 2156 x 1071046
-1 -2 2
¥o(y) = .1349 x 10 -.7790 x 107~ -,5233 x 10"y
+ 4182 x 1073 -.,1115 x 10" + .1575 x 1076y5 (30)
- .1167 x 1079y% & 3451 x 10747
y3(¥) = .1079 x 10 -.5980 x 107 -.1566 x 1072y°
-.1956 x 10733 + .1931 x 10™My* -.4760 x 1070yD

+.4577 x 107998 -~ 1507 x 1071047

Several sensors must be positioned in such a way that the
galn vector k can be approximated by a linear combination of sensor
outputs. An examination of the sensor gains (equation (29))

indicates at least one accelerometer must be used in order to pick
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up x3, the angle of attack; at least one rate gyro must be used
to determine pitch rate, Xs5 and at least one position gyro

must be used in order to determine pitch angle, Xq 1t was
found that using two of each type of sensors resulted in
approximate feedbacks quite close to the one desired. Three
sensor stations were chosen at 25, 50, and 75 meters and various
combinations of sensor locations were selected, That 15, the six
sensors were permitted between these three stations in a variety
of ways. Not all least squares solutions turned out to be good,
or in fact stable, although with six sensors good solutions re-
sulted in two thirds of the cases. Three typlical cases are
presented in Table 7. Here ¥y and y, are accelerometer
locations, y3 and'yu rate gyro locations, and y5 and J6 position
gyro locations. The resulting gains kl’k2’°“’k9 are of course
components of the vector ylkl + 72k2,+...+'79k9. The desired
gain vector kl,kg,...,k9 as listed in Table 5 case 4 1is pre-
sented in Table 7 for comparison. The resulting closed loop
characteristic roots are presented in Table 8. It is noted that
in two cases the closed loop is somewhat tighter than desired,
while in the other caSe the closed loop is not stable. The
calculations performed tacitly assume that the controller is
capable of responding to the signal klxl +..0t k9x9. Thus, it
may be that too tight a controller results in gimbal angle
saturation. This question was not investigated. Neither was
the question of gust response. Finally 1t is stated that the
sensor stations were selected completely arbitrarily and several

other selections of stations worked equally as well,
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CONCLUSIONS

A linear controller for a typlcal rocket booster was
designed by use of the quadratic penalty function criterion
and 1té approximate limplementation was accomplished using
less sensors than the plaht order., It is believed the procedures
involved constitute a design method which 1s capable of better
realization of optimal linear controllers for flexible vehicles,.
Such techniques together with the usual techniques of filtering
very high frequency dynamics out of the sensor signals yield an
attack to the synthesis problem for control of a very flexible

vehicle,
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Thrust Force

Axial Air Force

Alr Force Perpendicular to Long Axis of Vehicle
Control Force Perpendicular to Long Axis of Vehicle
Mass of Vehicle

Displacement of Mass Center of Vehicle Perpendicular to
Standard Path

Angle of Attack

Swivel Motor Deflection or Vane Deflection
Attitude Angle

Veloclty of Vehicle Along its Path
Normalized Flexure Modes

Constants

A constant

A Constant

Constants

Constants

Flexure Mode Damping Ratio

Flexure Mode Frequency

Yi(y) Normalized Flexure Mode Shape As A Function of y the

I8
y
y

cg

Distance From The Tail
Engine Pivot Point
Position of Mass Center With Respect to Vehicle Tail
A Parameter Measuring Distance From the Tail of the Véhicle

TABLE 1
LIST OF DEFINITIONS




-18~

TIDTHIA TIGIXTTIL TVOIJAL V HO4 SINVLSNOO TYOIWYNAA

1IW:.®ﬁ 0
8S8T "~ E°'nee~
000°T o
0 0
0 0
0 0
0 0
0 000"
0 020"~
0 0

T A

0

0
O0ET" -
000°T

0

0
0
0
0

o)

0
0

0° 691~
0]
0
0]
9000°
6620° -
0

¢ TIgVL

9562

0
0

6]

0

9HS0° -
000°T
0

0
0

o O O

0
1862~
0
#000°*
9G€0" -
0]

8reo"~ QET T~ 0

0 0 0
&) o 0
o) 0 0]
0 0 0
0 0 0
0 0] 0

€€TO - 000°T gSHO" -
Gote” 0 0
0 00°'T O




-19-

Ay = .OU6 A, = .4333 Ay = -.493

Ay = =270 + 5.4601 k5 =-,0270-5.4601 Ag =-,0650+12991

k7 = -,0650-12.991 k3 =~,0910+18 ,281 R9 =-,091-18,281
TABLE 3

CHARACTERISTIC ROOTS OF THE OPEN LOOP

SYSTEM
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CASE 1

Y, = -.043 Yp = -.769+.6011 Y3 =
vy = -.572-5361 Y5 = -.57245361 Yg =
Y7 = .119-13.01 Yg = .049-183.,1 79 =
CASE 2

71 = -0043 72 = -0765"*'-5981 "Y3 =
vy = -.401-5451 Y5 = -.401+5.451 Yg =
¥, = -.352-12.91 Yg = -.199-18.31 g =
CASE 3

vy = -.043 Yo = -.782+.5961 V5 =
'Y)_" = -0386"50391 75 = '0387+50391 76 =
Yo7 = -.352-12,91 Yg = -.199+18.31 Vg =

TABLE 9

CLOSED LOOP CHARACTERISTIC ROOTS FOR THE
APPROXIMATE FEEDBACKS LISTED IN TABLE 7

-.769-,6011
.119+13,01
.049+18.31

-.765-.5981
.352+12.,91
.199+18 .31

.782-.5961
.352+12.,91

-.199-18.31




